業績

原著論文 | 総説 | 著書 | 受賞

原著論文

2017

[11] Nanogel-based nasal ghrelin vaccine prevents obesity
Tatsuhiko Azegami; Yoshikazu Yuki; Shin-ichi Sawada; Mio Mejima; Kazuya Ishige; Kazunari Akiyoshi; Hiroshi Itoh; Hiroshi Kiyono
Mucosal Immunology, 10, 1351 - 1360, 2017

[10] Nanogel-integrated pH Responsive Composite Hydrogels for Controlled Drug Delivery
Gunce. E. Cinay; Mohammad Alipour; Yoshihide Hashimoto; Yoshihiro Sasaki; Kazunari Akiyoshi; Seda Kizilel
ACS Biomaterials-Science & Engineering, 3, 370 - 380, 2017

[9] Self-assembled nanogels of carborane-bearing polysaccharides for boron neutron capture therapy
R. Kawasaki; Y. Sasaki; K. Akiyoshi
Chem. Lett., 46, 513 - 515, 2017

[8] Intracellular delivery and passive tumor targeting of a self-assembled nanogel containing carborane clusters for boron neutron capture therapy
R. Kawasaki; Y. Sasaki; K. Akiyoshi
Biochem. Biophys. Res. Commun., 483, 147 - 152, 2017

[7] Amylose engineering: phosphorylase-catalyzed polymerization of functional saccharide primers for glycobiomaterials
T. Nishimura; K. Akiyoshi
WIREs Nanomed Nanobiotechnol, 9, e1423, 2017
DOI: 10.1002/wnan.1423

[6] Effects of a polysaccharide nanogel-crosslinked membrane on wound healing
Hiroki Maeda; Hiroshi Kobayashi; Takayuki Miyahara; Yoshihide Hashimoto; Kazunari Akiyoshi
J. Biomed. Mater. Res. Part B, 105B, 544 - 550, 2017

[5] Self-assembled nanogel of cholesterol-bearing xyloglucan as a drug delivery nanocarrier
S. Sawada; H. Yukawa; S. Takeda; Y. Sasaki; K. Akiyoshi
Journal of Biomaterials Science, Polymer Edition, 28, 1183 - 1198, 2017

[4] Glycan profiling analysis using evanescent-field fluorescence-assisted lectin array: Importance of sugar recognition for cellular uptake of exosomes from mesenchymal stem cells
A. Shimoda; Y. Tahara; S. Sawada; Y. Sasaki; K. Akiyoshi
Biochem. Biophys. Res. Commun., 491, 701 - 707, 2017

[3] Calcium-deficient Hydroxyapatite as a Potential Sorbent for Strontium
Y. Sekine; R. Motokawa; N. Kozai; T. Ohnuki; D. Matsumura; T. Tsuji; R. Kawasaki; K. Akiyoshi
Scientific Reports, 7, 2064, 2017

[2] Bio-transporting Self-assembled Nanofactories using Polymer Vesicles with Molecular Permeability for Enzyme Prodrug Cancer Therapy
T. Nishimura; Y. Sasaki; K. Akiyoshi
Adv. Materials, 29, 1702406, 2017

[1] Self-assembled Polypeptide Nanogels with Enzymatically Transformable Surface as an siRNA Delivery Platform
T. Nishimura; A. Yamada; K. Umezaki; S. Sawada; S. Mukai; Y. Sasaki; K. Akiyoshi
Biomacromolecules, 18, 3913 - 3923, 2017

2016

[14] A light sensitive self-assembled nanogel as a tecton for protein patterning materials
Tomoki Nishimura; Masahiro Takara; Sada-atsu Mukai; Shin-ichi Sawada; Yoshihiro Sasaki; Kazunari Akiyoshi
Chem. Commun., 52, 1222 - 1225, 2016

[13] Self-assembled nanogels of cholesterol-bearing hydroxypropyl cellulose: A thermoresponsive building block for nanogel tectonic materials
Y. Tahara; M. Sakiyama; S. Takeda; T. Nishimura; S. Sawada; Y. Sasaki; K. Akiyoshi
Langmuir, 2016
DOI: 10.1021/acs.langmuir.6b02406.

[12] Nanoscopic Structural Investigation of Physically Cross-Linked Nanogels Formed from Self-Associating Polymers
Y. Sekine; H. Endo; H. Iwase; S. Takeda; S. Mukai; H. Fukazawa; K. C. Littrell; Y. Sasaki; K, Akiyoshi
J. Phys. Chem. B, 2016
DOI: DOI: 10.1021/acs.jpcb.6b06795.

[11] Saccharide Recognition Based on Self-assembly of Amphiphilic Phenylboronic Acid Azoprobes
Y. Tsuchido; R. Sato; N. Nodomi; T. Hashimoto; K. Akiyoshi; T. Hayashita
Langmuir, 2016
DOI: 10.1021/acs.langmuir.6b02917.

[10] Mouthguard biosensor with telemetry system for monitoring of saliva glucose: A novel cavitas sensor
T. Arakawa; Y. Kuroki; H. Nitta; P. Chouhan; K. Toma; S. Sawada; S. Takeuchi; T. Sekita; K. Akiyoshi; S. Minakuchi; K. Mitsubayashi
Biosensors and Bioelectronics, 84, 106 - 111, 2016

[9] Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes
K. Kamiya; R. Kawano; T. Osaki; K. Akiyoshi; S. Takeuchi
Nature Chemistry, 8, 881 - 889, 2016

[8] Magnetically guided protein transduction by hybrid of nanogel chaperone with iron oxide nanoparticles
R. Kawasaki; Y. Sasaki; K. Katagiri; S. Mukai; S. Sawada; K. Akiyoshi
Angew. Chem. Int. Ed., 55, 11377 - 11381, 2016

[7] Effects of a polysaccharide nanogel-crosslinked membrane on wound healing
H. Maeda; H. Kobayashi; T. Miyahara; Y. Hashimoto; K. AKiyoshi; S. Kasugai
Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2016
in press. DOI: 10.1002/jbm.b.33571

[6] Advanced Artificial Extracellular Matrices Using Amphiphilic Nanogel-Cross-Linked Thin Films To Anchor Adhesion Proteins and Cytokines
Y. Hashimoto; S. Mukai; S. Sawada; Y.Sasaki; K. Akiyoshi
ACS Biomaterials-Science & Engineering, 3, 375 - 384, 2016

[5] Nanogel containing electrospun nanofibers as a platform for stable loading of proteins
A. Shimoda; Y. Chen; K. Akiyoshi
RSC Advances, 47, 40811 - 40817, 2016

[4] Guanine-Rich Sequences Are a Dominant Feature of Exosomal microRNAs across the Mammalian Species and Cell Types
F. Momose; N. Seo; Y. Akahori; S. Sawada; T. Ogura; K. Akiyoshi; H. Shiku
PLOS ONE, 4, 2016
[e0154134]:Number of citation

[3] Engineering hybrid exosomes by membrane fusion with liposomes
Y. Sato; K. Umezaki; S.Sawada; S. Mukai; N. Harada; H. Shiku; K. Akiyoshi
Scentific Reports, 6, 2016
[21933]:Number of citation

[2] Exosomes as nanocarriers for systemic delivery of the Helicobacter pylori virulence factor CagA
A. Shimoda; K. Ueda; S. Nishiumi; N. Murata-Kamiya; S. Mukai; S. Sawada; T. Azuma; M. Hatakeyama; K. Akiyoshi
Scientific Report, 6, 2016
[18346]:Number of citation

[1] Liposome chaperon in cell-free membrane protein synthesis: One-step preparation of KcsA-integrated liposomes and electrophysiological analysis by the planar bilayer method
M. Ando; M. Akiyama; D. Okuno; M. Hirano; T. Ide; S. Sawada; Y. Sasaki; K. Akiyoshi
Biomaterials Science , 4, 258 - 264, 2016

2015

[15] Comprehensive study of liposome-assisted synthesis of membrane proteins using a reconstituted cell-free translation system
T. Niwa; Y. Sasaki; E. Uemura; S. Nakamura; M. Akiyama; M. Ando; S. Sawada; S. Mukai; T. Ueda; H. Taguchi; K. Akiyoshi
Scentific Reports, 5, 2015
[18025]:Number of citation

[14] Simple Preparation and Characterization of Viscoelastic Gels Inducedby Multiple Intermolecular Interactions Using Low-Molecular-Weight Species
T. Kubo; K. Kuroda; T. Naito; S. Mukai; T. Sano; K. Akiyoshi; K. Otsuka
Bull. Chem. Soc. Jpn., 88, 1575 - 1580, 2015

[13] Current advances in self-assembled nanogel delivery systems for immunotherapy
Y. Tahara; K. Akiyoshi
Adv. Drug Deliv. Rev., 95, 65 - 76, 2015

[12] Amylose-Based Cationic Star Polymers for siRNA Delivery
T. Nishimura; K. Umezaki; S. Mukai; S. Sawada; K. Akiyoshi
BioMed Research International, 6, 962941, 2015

[11] Long-Lasting and Efficient Tumor Imaging Using a High Relaxivity Polysaccharide Nanogel Magnetic Resonance Imaging Contrast Agent
M. Chan; J. Lux; T. Nishimura; K Akiyoshi; A. Almutairi
Biomacromolecules, 16, 2964 - 2971, 2015

[10] Nanogel-based pneumococcal surface protein A nasal vaccine induces microRNA-associated Th17 cell responses with neutralizing antibodies against Streptococcus pneumoniae in macaques
Y. Fukuyama; Y. Yuki; Y. Katakai; N. Harada; S. Takeda; M. Mejima; S. Joo; S. Kurokawa; S. Sawada; H. Shibata; E. J. Park; K. Fujihashi; D. E. Briles; Y. Yasutomi; H. Tsukada K. Akiyoshi H. Kiyono
Mucosal Immunology, 8, 1144 - 1153, 2015

[9] Affinity-mediated capture and release of amphiphilic copolymers for controlling antimicrobial activity
H. Takahashi; K. Akiyoshi; K. Kuroda
Chem. Commun., 51, 12597 - 12600, 2015

[8] Development of a Novel Tetravalent Synthetic Peptide That Binds to Phosphatidic Acid
R. Ogawa; K. Nagao; K. Taniuchi; M. Tsuchiya; U. Kato; Y. Hara; T. Inaba; T. Kobayashi; Y. Sasaki; K. Akiyoshi; M. Watanabe-Takahashi; K. Nishikawa; M. Umeda
PLOS ONE, 10, e0131668, 2015

[7] Nanocarrier-integrated microspheres: Nanogel tectonic engineering for advanced drug delivery systems
Y. Tahara; S. Mukai; S. Sawada; Y. Sasaki; K. Akiyoshi
Advanced Materials, 27, 5080 - 5088, 2015

[6] The design of phenylboronic acid azoprobe–polyamidoamine dendrimer complexes as supramolecular sensors for saccharide recognition in water
Y. Tsuchido; Y. Sasaki; K. Aimu; T. Hashimoto ; K. Akiyoshi; T. Hayashita
New J. Chem, 39, 2620 - 2626 , 2015

[5] Nanogel-crosslinked nanoparticles increase the inhibitory effects of W9 synthetic peptide on bone loss in a murine bone resorption model
T. Sato; N.Alles; M. Khan; K. Nagano; M. Takahashi; Y. Tamura; A. Shimoda; K. Akiyoshi; K. Ohya; K. Aoki
Int. Journal of Nanomedicine, 10, 1 - 15, 2015

[4] Glyco Star Polymers as Helical Multivalent Host and Biofunctional Nano-Platform
T. Nishimura; S. Mukai; S. Sawada; K. Akiyoshi
ACS Macro Lett., 4, 367 - 371, 2015

[3] Nanogel tectonic porous gel loading biologics, nanocarriers, and cells for advanced scaffold
Y. Hashimoto; S. Mukai; S. Sawada; K. Akiyoshi
Biomaterials, 37, 107 - 115, 2015

[2] Effective CpG DNA delivery using amphiphilic cycloamylose nanogels
Y. Tahara; J. Yasuoka; Y. Sasaki; K. Akiyoshi
Biomaterials Science, 3, 256 - 264, 2015

[1] Protein nanogelation with vitamin B6-bearing pullulan as a bio-crosslinker
Y. Sasaki; Y. Tsuchido; S. Sawada; K. Akiyoshi
Polymer Journal, 2015

2014

[6] Dual-sugar Nanogel Comprising beta-1,3-Glucan and Cholesterol-bearing Dextran for Protein Delivery Targeting Antigen Presenting Cells
Y. Maegawa; S. Mochizuki; Y. Sanada; K. Akiyoshi; K. Sakurai
Chem. Lett., 43, 662 - 654, 2014

[5] Therapeutic Effect of Nanogel-Based Delivery of Soluble FGFR2 with S252W Mutation on Craniosynostosis
M. Yokota; Y. Kobayashi; J. Morita; H. Suzuki; Y. Hashimoto; Y. Sasaki; K. Akiyoshi; K. Moriyama
PLOS ONE, 9, 7, 2014
[e101693]:Number of citation

[4] Nanogel-Based Immunologically Stealth Vaccine Targets Macrophages in the Medulla of Lymph Node and Induces Potent Antitumor Immunity
D. Muraoka; N. Harada; T. Hayashi; Y. Tahara; F. Momose; S. Sawada; S. Mukai; K. Akiyoshi; H. Shiku
ACS Nano, 8, 9, 9209 - 9218, 2014

[3] Development and Potential Theranostic Applications of a Self-Assembled Hybrid of Magnetic Nanoparticle Clusters with Polysaccharide Nanogels
K. Katagiri; K. Ohta; K. Inumaru; K. Hayashi; Y. Sasaki; K. Akiyoshi
ChemPlusChem, 79, 11, 1631 - 1637, 2014

[2] Cycloamylose-nanogel drug delivery system-mediated intratumor silencing of the vascular endothelial growth factor regulates neovascularization in tumor microenvironment
H. Fujii; M. Shin-Ya; S. Takeda; Y. Hashimoto; S. Mukai; S. Sawada; T. Adachi; K. Akiyoshi; T. Miki; O. Mazda
Cancer Sci., 105, 12, 1616 - 1625, 2014

[1] Microrheology of nanogel-integrated system
Y. Sekine; K. Okazaki; T. Ikeda-Fukazawa; M. Ichikawa; K. Yoshikawa; S. Mukai; K. Akiyoshi
Colloid Polym. Sci., 292, 2, 325 - 331, 2014

2013

[14] A polyion complex nanogel
M. Takeo; T. Mori; T. Niidome; S. Sawada; K. Akiyoshi; Y. Katayama
J. Collod. Interf. Sci., 390, 1, 78 - 84, 2013

[13] Nanogel-Based PspA Intranasal Vaccine Prevents Invasive Disease and Nasal Colonization by Streptococcus pneumoniae
I. Kong; A. Sato; Y. Yuki; T. Nochi; H. Takahashi; S. Sawada; M. Mejima; S. Kurokawa; K. Okada; S. Sato; D. E. Briles; J. Kunisawa; Y. Inoue; K. Akiyoshi; H. Kiyono
Infect. Immun., 81, 5, 1625 - 1634, 2013

[12] Self-assembled pH sensitive cholesteryl pullulan nanogel as a protein delivery vehicle
N. Morimoto; S.Hirano; H. Takahashi; S. Loethen; D. H. Thompson; K. Akiyosh
Biomacromolecules, 14, 1, 56 - 63, 2013

[11] Templated nucleation of hybrid iron oxide nanoparticles on polysaccharide nanogels
K. Katagiri; K. Ohta; K. Koumoto; K. Kurosu; Y. Sasaki; K. Akiyoshi
Colloid Polym. Sci., 291, 1375 - 1380, 2013

[10] Nanogel bottom-up gel biomaterials for protein delivery: photopolymerization of an acryloyl-modified polysaccharide nanogel macromonomer
Y. Tahara; S. Kosuge; S. Sawada; K. Akiyoshi
Reactive and Functional Polymers, 73, 958 - 964, 2013

[9] Cyclodextrin triggered dimensional changes of polysaccharide nanogel integrated hydrogels at nanometer resolution
M. Gao; S. Toita; S. Sawada; K. Akiyoshi; B. T. Stokke
Soft Matter, 9, 5178 - 5185, 2013

[8] Sphingosine kinase 2 inhibitor SG-12 induces apoptosis via phosphorylation by sphingosine kinase 2
M. Hara-Yokoyama; K. Terasawa; S. Ichinose; A. Watanabe; K. A. Podyma-Inoue; K. Akiyoshi; Y. Igarashi; M. Yanagishita
Bioorganic & Medicinal Chemistry Letters, 23, 2220 - 2224, 2013

[7] Polysaccharide-hair cationic polypeptide nanogels: Self-assembly and enzymatic polymerization of amylose primer modified cholesteryl poly(L-lysine)
N. Morimoto; M. Yamazaki; J. Tamada; K. Akiyoshi
Langmuir, 29, 7509 - 7514, 2013

[6] Molecular logistics using cytocleavable polyrotaxanes for the reactivation of enzymes delivered in living cells
A. Tamura; G. Ikeda; J-H. Seo; K. Tsuchiya; H. Yajima; Y. Sasaki; K. Akiyoshi; N. Yui
Scientific Report, 3, 2252, 2013

[5] Nanogel-based antigen-delivery system for nasal vaccines
Y. Yuki; T. Nochi; G. Kong; H.Takahashi; S. Sawada; K. Akiyoshi; H. Kiyono
Biotechnology and Genetic Engineering Reviews, 29, 61 - 72, 2013

[4] Cationic amphiphilic polysaccharide nanoballs: protein stabilization and intracellular delivery by nanoencapsulation
H. Takahashi; S. Sawada; K.Akiyoshi
Biomaterials Science, 1, 842 - 849, 2013

[3] Amphiphilic nanogel of enzymatically synthesized glycogen as an artificial molecular chaperone for effective protein refolding
S. Takeda; H. Takahashi; S. Sawada; Y. Sasaki; K. Akiyoshi
RSC Advances, 3, 48, 25716 - 25718, 2013

[2] The Effect of Hydrophilic Ionic Liquids 1-Ethyl-3-Methylimidazolium Lactate and Choline Lactate on Lipid Vesicle Fusion
E. H. Hayakawa; E. Mochizuki; T. Tsuda; K. Akiyoshi; H. Matsuoka; S. Kuwabata
PLOS ONE, 8, 12, e85467, 2013

[1] Hepatic crown-like structure: a unique histological feature in non-alcoholic steatohepatitis in mice and humans
M. Itoh; H. Kato; T. Suganami; K. Konuma; Y. Marumoto; S. Terai; H. Sakugawa; S. Kanai; M. Hamaguchi; T. Fukaishi; S. Aoe; K. Akiyoshi; Y. Komohara; M. Takeya; I. Sakaida; Y. Ogawa
PLOS ONE, 2013

2012

[10] Biodegradable Nanogel-integrated Hydrogels for Sustained Protein Delivery
A. Shimoda; Y. Yamamoto; S. Sawada; K. Akiyoshi
Macromol. Research, 20, 266 - 270, 2012

[9] Self-assembled Nanogel Engineering for Advanced Biomedical Technology
Y.Sasaki; K. Akiyoshi
Chem. Lett., 41, 202 - 208, 2012

[8] Shear flow-induced nanotubulation of surface-immobilized liposomes
Y. Sekine; K. Abe; A. Shimizu; Y. Sasaki; S. Sawada; K. Akiyoshi
RSC Advances, 2, 2682 - 2684, 2012

[7] Synthesis and Biological Properties of Highly Sequence-Specific Alkylating N-Methylpyrrole-N-Methylimidazole (PI) Polyamide Conjugates
G. Kashiwazaki; T. Bando; T. Yoshidome; S. Masui; T. Takagaki; K. Hashiya; G. Pandian; J. Yasuoka; K. Akiyoshi; H. Sugiyama
J. Medicinal Chemistry, 55, 2057 - 2066, 2012

[6] Injectable Hydrogel for Sustained Protein Release by Salt-Induced Association of Hyaluronic Acid Nanogel
T. Nakai; T. Hirakura; Y. Sakurai; T. Shimoboji; M. Ishigai; K. Akiyoshi
Macromol. Bioscience, 12, 475 - 483, 2012

[5] Apoptotic marginal zone deletion of anti-Sm/ribonucleoprotein B cells
Y. Kishia; T. Higuchia; S. Phoon; Y. Sakamakia; K. Kamiya; G. Riemekasten; K. Akiyoshi; M. Weigert; T. Tsubata
Proc. Natl. Acad. Sci. USA, 109, 7811 - 7816, 2012

[4] Dual crosslinked hydrogel nanoparticles by nanogel bottom-up method for sustained-release delivery
A. Shimoda; S. Sawadad; A. Kano; A. Maruyama; A. Moquin; F. M. Winnik; K. Akiyoshi
Colloids and Surfaces B: Biointerfaces, 99, 38 - 44, 2012

[3] Exploitation of a novel polysaccharide nanogel cross-linking membrane for guided bone regeneration (GBR)
T. Miyahara; M. Nyan; A. Shimoda; Y. Yamamoto; S. Kuroda; M. Shiota; K. Akiyoshi; S. Kasugai
J. Tissue Engineering and Regererative Medicine, 6, 666 - 672, 2012

[2] Cholesteryl group- and acryloyl group-bearing pullulan nanogel to deliver BMP2 and FGF18 for bone tissue engineering
M. Fujioka-Kobayashi; M. S. Ota; A. Shimoda; K. Nakahama; K. Akiyoshi; Y. Miyamoto; S. Iseki
Biomaterials, 33, 7613 - 7620, 2012

[1] A hybrid hydrogel biomaterial by nanogel engineering: bottom-up design with nanogel and liposome building blocks to develop a multi-drug delivery system
Y. Sekine; Y. Moritani; T. Ikeda-Fukazawa; Y. Sasaki; K. Akiyoshi
Advance Healthcare Materials, 1, 6, 722 - 728, 2012

2011

[14] Amphiphilic polysaccharide nanoballs: a new building block for nanogel biomedical engineering and artificial chaperone
H. Takahashi; S. Sawada; K. Akiyoshi
ACS Nano, 5, 1, 337 - 345, 2011

[13] Metal coordinative-crosslinked polysaccharide nanogels with redox sensitivity
Y. Sasaki; T. Hirakura; S. Sawada; K Akiyoshi
Chem. Lett., 40, 182 - 183, 2011

[12] Cyclodextrin-responsive nanogel as an artificial chaperone for horseradish peroxidase
S. Sawada; Y. Sasaki; Y. Nomura; K. Akiyoshi
Colloid Polym. Sci., 289, 685 - 691, 2011

[11] Amphiphilic Polysaccharide Nanogels as an Artificial Chaperone in Cell-Free Protein Synthesis
Y. Sasaki; W. Asayama; T. Niwa; S. Sawada; T. Ueda; H. Taguchi; K. Akiyoshi
Macromol. Bioscience, 11, 814 - 820, 2011

[10] Construction of protein-crosslinked nanogels with vitamin B6 bearing polysaccharide
Y. Sasaki; Y. Tsuchido; S. Sawada; K. Akiyoshi
Polym. Chem., 2, 1267 - 1270, 2011

[9] Cell specific peptide-conjugated polysaccharide nanogels for protein delivery
A. Shimoda; S. Sawada; K. Akiyoshi
Macromol. Bioscience, 11, 882 - 888, 2011

[8] Cationic nanogels efficiently deliver proteins to myeloma cells and primary T lymphocytes poorly expressing heparan sulfate
K. Watanabe; Y. Tsuchiya; Y. Kawaguchi; S. Sawada; H. Ayame; K. Akiyoshi; T. Tsubata
Biomaterials, 32, 5900 - 5905, 2011

[7] Biomedical soft contact-lens sensor for in situ ocular biomonitoring of tear contents
MingXing Chu; T. Shirai; D. Takahashi; T. Arakawa; H. Kudo; K. Sano; S. Sawada; K. Yano; Y. Iwasaki; K. Akiyoshi; M. Mochizuki; K. Mitsubayashi
Biomed Microdevices, 13, 603 - 611, 2011

[6] Nanogel-based scaffold delivery of prostaglandin E2 receptor-specific agonist in combination with a low dose of growth factor heals critical-size bone defects in mice
P. Kamolratanakul; T. Hayata; Y. Ezura; A. Kawamata; C. Hayashi; Y. Yamamoto; H. Hemmi; M. Nagao; R. Hanyu; T. Notomi; T. Nakamoto; T. Amagasa; K. Akiyoshi; M. Noda
Arthritis and Rheumatism, 63, 4, 1021 - 1033, 2011

[5] Polysaccharide nanogel gene delivery system with endosome-escaping function: Co-delivery of plasmid DNA and phospholipase A2
S. Toita; S. Sawada; K. Akiyoshi
J. Controlled Release, 155, 54 - 59, 2011

[4] Synthesis and in situ insertion of a site-specific fluorescently labeled membrane protein into cell-sized liposomes
T. Ohtsuka; S. Neki; T. Kanai; K. Akiyoshi; S. M. Nomura; T. Ohtsuki
Analytical Biochemistry, 418, 97 - 101, 2011

[3] Cadherin-integrated liposomes with potential application in a drug delivery system
K. Kamiya; K. Tsumoto; T. Yoshimura; K. Akiyoshi
Biomaterials, 32, 9899 - 9907, 2011

[2] Artificial chaperone polysaccharide nanogels for protein delivery: A thermodynamic study of protein-nanogel interactions using fluorescence correlation spectroscopy
Y. Sasaki; D. Iida; H. Takahashi; S. Sawada; K. Akiyoshi
Current Drug Discovery Technologies, 8, 308 - 313, 2011

[1] The tumor necrosis factor type 2 receptor plays a protective role in tumor necrosis factor-α-induced bone resorption lacunae on mouse calvatiae
K. Nagano; N. Alles; A. H. Mian; A. Shimoda; N. Morimoto; Y. Tamura; H. Shimokawa; K. Akiyoshi; K. Ohya; K. Aoki
J. Bone Miner, 29, 6, 671 - 681, 2011

2010

[11] Functional cycloamylose-based biomaterial: application in a gene delivery system
S. Toita; N. Morimoto; K. Akiyoshi
Biomacromolecules, 11, 397 - 401, 2010

[10] Nano-encapsulation of lipase by self-assembled nanogels: induction of high enzyme activity and thermal stabilization
S. Sawada; K. Akiyoshi
Macromol. Biosci., 10, 353 - 358, 2010

[9] Hybrid hyaluronan hydrogel encapsulated nanogel as a protein nanocarrier: new system for sustained delivery of protein with a chaperone-like function
T. Hirakura; K. Yasugi; T. Nemoto; M. Sato; T. Shimoboji; Y. Aso; N. Morimoto; K. Akiyoshi
J. Controlled Release, 142, 483 - 489, 2010

[8] Development of an Artificial Chaperone System Based on Cyclodextrin
Y. Sasaki; K. Akiyoshi
Current Pharmaceutical Biotechnology, 11, 300 - 305, 2010

[7] Nanogel antigenic protein delivery system for adjuvant-free intranasal vaccines
T. Nochi; Y. Yuki; H. Takahashi; S. Sawada; M. Mejima; T. Kohda; N. Harada; G. Kong; A. Sato; N. Kataoka; D. Tokuhara; S. Kurokawa; Y. Takahashi; H. Tsukada; S. Kozaki
Nature Materials, 9, 572 - 578, 2010
K. Akiyoshi, H. Kiyono

[6] Direct integration of cell-free synthesized connexin-43 into liposomes utilizing chaperone-like function of liposomes
Y. Moritani; S. Nomura; I. Morita; K. Akiyoshi
FEBS J., 277, 3343 - 3352, 2010

[5] Polysaccharide nanogel-cyclodextrin system as artificial chaperone for in vitro protein synthesis of green fluorescent protein
Y. Sasaki; Y. Nomura; S. Sawada; K. Akiyoshi
Polymer Journal, 42, 823, 2010

[4] Preparation of connexin43-integrated giant liposomes by a baculovirus expression-liposome fusion method
K. Kamiya; K. Tsumoto; S. Arakawa; S. Shimizu; I. Morita; T. Yoshimura; K. Akiyoshi
Biotechnology & Bioengineering, 107, 836 - 843, 2010

[3] Suppression of NF-kappaB increases bone formation and ameliorates osteopenia in ovariectomized mice
N. Alles; N. S. Soysa; J. Hayashi; M. Khan; A. Shimoda; H. Shimokawa; O. Ritzeler; K. Akiyoshi; K. Aoki; K. Ohya
Endocrinology, 151, 4626 - 4634, 2010

[2] DNA separation by cholesterol-bearing pullulan nanogels
K. Kondo; N. Kaji; S. Toita; Y. Okamoto; M. Tokeshi; K. Akiyoshi; Y. Baba
Biomicrofluidics, 4, 32210 - 33218, 2010

[1] Nanogel engineering for new nanobiomaterials: From chaperoning engineering to biomedical applications
Y. Sasaki; K. Akiyoshi
The Chemical Record, 10, 366 - 376, 2010

2009

[20] Interaction of Nanogel with Cyclodextrin or Protein: Study by Dynamic Light Scattering and Small-angle Neutron Scattering
Inomoto N; Osaka N; Suzuki T; Hasegawa U; Ozawa Y; Endo H; Akiyoshi K; Shibayama M
Polymer, 50, 541 - 546, 2009

[19] Cycloamylose-based Biomaterial: Nanogels of Cholesterol-bearing Cationic Cycloamylose for siRNA Delivery
Toita S; Soma Y; Morimoto N; Akiyoshi K
Chem. Lett., 38, 1114 - 1115, 2009

[18] Fluorogenically Active Leucine Zipper Peptides as New Tag-Probe Pairs for Protein Imaging in Living Cells
Tsutsumi H; Nomura W; Abe S; Mino T; Masuda A; Ohashi N; Tanaka T; Ohba K; Yamamoto N; Akiyoshi K; Tamamura H
Angew. Chem.-Int. Edit. , 48, 9164 - 9166, 2009

[17] Effects of cholesterol-bearing pullulan (CHP)-nanogels in combination with prostaglandin E1 on wound healing
H. Kobayashi; O. Katakura; N. Morimoto; K. Akiyoshi; S. Kasugai
J. Biomed. Mater. Res. B., 91, 55 - 60, 2009

[16] Raspberry-Like Assembly of Cross-Linked Nanogels for Protein Delivery
U. Hasegawa; S. Sawada; T. Shimizu; T. Kishida; E. Otsuji; O. Mazda; K. Akiyoshi
J. Controlled Release, J. Control. Release., 140, 312 - 317, 2009

[15] A Nano Sensory Device Fabricated on a Liposome for Detection of Chemical Signals
Y. Sasaki; Y. Shioyama; W.-J. Tian; J. Kikuchi; S. Hiyama; Y. Moritani; T. Suda
Biotechnology and Bioengineering, 2009

[14] The binding of pullulan modified cholesteryl nanogels to Aβ oligomers and their suppression of cytotoxicity
S. Boridy; H. Takahashi; K. Akiyoshi; D. Maysinger
Biomaterials, 30, 29, 5583 - 5591, 2009

[13] A soft and flexible biosensor using a phospholipid polymer for continuous glucose monitoring
M. X. Chu; H. Kudo; T. Shirai; K. Miyajima; H. Saito; N. Morimoto; K. Yano; Y. Iwasaki; K. Akiyoshi; K. Mitsubayashi
Biomedical Microdevices, 11, 4, 837 - 842, 2009

[12] Self-assembeld nanogel of hydrophobized dendritic dextrin for protein delivery
Y. Ozawa; S. Sawada; N. Morimoto; K. Akiyoshi
Macromol. Biosci., 9, 694 - 701, 2009

[11] Interaction of Nanogel with Cyclodextrin or Protein: Study by Dynamic Light Scattering and Small-angle Neutron Scattering
N. Inomoto; N. Osaka; T. Suzuki; U. Hasegawa; Y. Ozawa; H. Endo; K. Akiyoshi; M. Shibayama
Polymer, 50, 541 - 546, 2009

[10] Polysaccharide nanogel delivery of a TNF-? and RANKL antagonist peptide allows systemic prevention of bone loss
Alles, Neil; Soysa, Niroshani S.; Hussain, M. D. Anower; Tomomatsu, Nobuyoshi; Saito, Hiroaki; Baron, Roland; Morimoto, Nobuyuki; Aoki, Kazuhiro; Akiyoshi, Kazunari; Ohya, Keiichi
European Journal of Pharmaceutical Sciences, 37, 2, 83 - 88, 2009
<5月12日>

[9] Direct formation of proteo-liposomes by in vitro synthesis and cellular cytosolic delivery with connexin-expressing liposomes
Kaneda, Makoto; Nomura, Shin-ichiro M; Ichinose, Shizuko; Kondo, Satoshi; Nakahama, Ken-ichi; Akiyoshi, Kazunari; Morita, Ikuo
Biomaterials, 30, 23-24, 3971 - 3977, 2009
<5月6日>

[8] Interaction of self-assembled cationic nanogels with oligo-DNA and function as artificial nucleic acid chaperone
Morimoto, Nobuyuki; Tamada, Junko; Sawada, Shin-ichi; Shimada, Naohiko; Kano, Arihiro; Maruyama, Atsushi; Akiyoshi, Kazunari
Chemistry Letters, 38, 5, 496 - 497, 2009
<4月18日>

[7] Propagation and amplification of molecular information using a photo-responsive molecular switch
Mukai M; Maruo K; Kikuchi J; Sasaki Y; Hiyama S; Moritani Y; Suda T
Supramolecular Chem., 50, 2, 541, 2009
<4月>

[6] Enzyme-responsive artificial chaperone system with amphiphilic amylose primer
Morimoto, Nobuyuki; Ogino, Naruhito; Narita, Tadashi; Akiyoshi, Kazunari
Journal of Biotechnology, 140, 3-4, 246 - 249, 2009
<3月25日>

[5] Composite nanomaterials by self-assembly and controlled crystallization of poly(2-isopropyl-2-oxazoline)-grafted polysaccharides
Morimoto, Nobuyuki; Obeid, Rodolphe; Yamane, Setsuko; Winnik, Francoise M; Akiyoshi, Kazunari
Soft Matter, 5, 8, 1597 - 1600, 2009
<3月23日>

[4] Osteoblastic bone formation is induced by using nanogel-crosslinking hydrogel as novel scaffold for bone growth factor
Hayashi, Chikako; Hasegawa, Urara; Saita, Yoshitomo; Hemmi, Hiroaki; Hayata, Tadayoshi; Nakashima, Kazuhisa; Ezura, Yoichi; Amagasa, Teruo; Akiyoshi, Kazunari; Noda, Masaki
Journal of Cellular Physiology, 220, 1, 1 - 7, 2009
<3月19日>

[3] Nanogel-calcium phosphate hybrid nanoparticles with negative or positive charges for potential biomedical applications
Yamane, Setsuko; Sugawara, Ayae; Sasaki, Yoshihiro; Akiyoshi, Kazunari
Bulletin of the Chemical Society of Japan, 82, 3, 416 - 418, 2009
<3月12日>

[2] Hybrid nanoapatite by polysaccharide nanogel-templated mineralization
Yamane, Setsuko; Sugawara, Ayae; Watanabe, Akihiko; Akiyoshi, Kazunari
Journal of Bioactive and Compatible Polymers, 24, 2, 151 - 168, 2009
<3月>

[1] ANA Deficiency Enhances Bone Morphogenetic Protein-induced Ectopic Bone Formation via Transcriptional Events
Miyai, Kentaro; Yoneda, Mitsuhiro; Hasegawa, Urara; Toita, Sayaka; Izu, Yayoi; Hemmi, Hiroaki; Hayata, Tadayoshi; Ezura, Yoichi; Mizutani, Shuki; Miyazono, Kohei; Akiyoshi, Kazunari;; Yamamoto, Tadashi; Noda, Masaki
Journal of Biological Chemistry, 284, 16, 10593 - 10600, 2009
<2月20日>

2008

[14] Direct preparation of giant proteo-liposomes by in vitro membrane protein synthesis
Nomura SM; Kondoh S; Asayama W; Asada A; Nishikawa S; Akiyoshi K
J. Biotechnol., 133, 190 - 195, 2008

[13] Nanogel DDS enables sustained release of a cytokine for tumor immunotherapy
Shimizu T; Kishida T; Hasegawa U; Ueda Y; Imanishi J; Yamagishi H; Akiyoshi K; Otsuji E; Mazda O
Biochem. Biophys. Res. Commun., 367, 330 - 335, 2008

[12] Humoral immune responses in patients vaccinated with 1-146 HER2 protein complexed with cholesteryl pullulan nanogel (CHP-HER2)
Kageyama S; Kitano S; Hirayama M; Nagata Y; Imai H; Shiraishi T; Akiyoshi K; Scott A; Murphy R; Hoffman E; Old L; Katayama N; Shiku H
Cancer Sci., 99, 601 - 607, 2008

[11] Covalent immobilization of antibody fragments on well-defined polymer brushes via site-directed method
Iwata R; Iwasaki Y; Akiyoshi K
Colloids Surf., B: Biointerfaces, 62, 288 - 298, 2008

[10] Comparison of Refolding Activities between Nanogel Artificial Chaperone and GroEL Systems
Asayama W; Sawada S; Taguchi H; Akiyoshi K
Int. J. Biol. Macromol., 42, 241 - 246, 2008

[9] Protein-conjugated QD effectively delivered into living cells by a cationic nanogel
Toita S; Hasegawa U; Koga H; Sekiya I; Muneta T; Akiyoshi K
J. Nanosci. Nanotechnol., 8, 1 - 7, 2008

[8] Self-assembled cationic nanogels for intracellular protein delivery system
Ayame H; Morimoto N; Akiyoshi K
Bioconjugate Chem., 19, 882 - 890, 2008

[7] Thermo-responsive hydrogels with nanodomains: rapid shrinking of nanogel-crosslinking hydrogel of poly (N-isopropyl acrylamide)
Morimoto N; Ohki T; Kurita K; Akiyoshi K
Macromol. Rapid Commun., 29, 672 - 676, 2008

[6] Glucose sensor using phospholipid polymer-based enzyme immobilization method
Kudo H; Yagi T; Chu MX; Saito H; Morimoto M; Iwasaki Y; Akiyoshi K; Mitsubayashi K
Anal. Bioanal. Chem., 391, 4, 1269 - 1274, 2008

[5] Dual Stimuli-Responsive Nanogels by Self-Assembly of Polysaccharides Lightly Grafted with Thiol-Terminated Poly(N-isopropylacrylamide) Chains
Morimoto N; Qiu XP; Winnik FM; Akiyoshi K
Macromolecules, 41, 16, 5985 - 5987, 2008

[4] Fluorescent sensor responsive to local viscosity and its application to the imaging of liquid-ordered domain in lipid membranes
Yasuhara K; Sasaki Y; Kikuchi J
Colloids Surf., B: Biointerfaces, 57, 1, 145 - 149, 2008

[3] A photo-responsive cholesterol capable of inducing a morphological transformation of the liquid-ordered microdomain in lipid bilayers
Yasuhara K; Sasaki Y; Kikuchi J
Colloid Polym. Sci., 286, 14-15, 1675 - 1680, 2008

[2] Siloxane-crosslinked Polysaccharide Nanogels for Potential Biomedical Applications
Yamane S; Sasaki Y; Akiyoshi K
Chem. Lett., 37, 12, 1282, 2008

[1] Interaction of Nanogel with Cyclodextrin or Protein: Study by Dynamic Light Scattering and Small-angle Neutron Scattering
Inomoto N; Osaka N; Suzuki T; Hasegawa U; Ozawa Y; Endo H; Akiyoshi K; Shibayama M
Polymer, 50, 2, 541, 2008

2007

[12] Botryoidal assembly of cholesteryl-pullulan/ poly(N-isopropylacrylamide) nanogels
Morimoto N; Winnik FM; Akiyoshi K
Langmuir, 23, 217 - 223, 2007

[11] Enzyme-Responsive Molecular Assembly System with Amylose-Primer Surfactants
Morimoto N; Ogino N; Narita T; Kitamura S; Akiyoshi K
J. Am. Chem. Soc., 129, 458, 2007

[10] Enzyme-degradable phosphorylcholine porous hydrogels cross-linked with polyphosphoesters for biocompatible cell matrices
Wachiralarpphaithoon C; Iwasaki Y; Akiyoshi K
Biomaterials, 28, 984, 2007

[9] Intracellular Delivery of Nanogel-Quantum Dot Hybrid Nanoparticles into Human Periodontal Ligament Cells
Fukui T; Kobayashi H; Hasegawa U; Nagasawa T; Akiyoshi K; Ishikawa I
Drug Metabolism Lett., 1, 131 - 135, 2007

[8] Possible molecular evolution of biomembranes: from single-chain to double-chain lipids
Gotoh M; Sugawara A; Akiyoshi K; Matsumoto I; Ourisson G; Nakatani Y
Chem. Biodiversity, 4, 837 - 848, 2007

[7] Self-assembled Nanogels of Cholesteryl-modified Polysaccharides: Effect of the Polysaccharide Structure on Their Association Characteristics in the Dilute and Semi-dilute Regimes
Akiyama E; Morimoto N; Kujawa P; Winnik FM; Akiyoshi K
Biomacromolecules, 8, 2366 - 2373, 2007

[6] Nanogel-based Delivery System Enhances PGE2Effects on Bone Formation
Kato N; Hasegawa U; Morimoto N; Saita Y; Nakashima K; Ezura Y; Kurosawa H; Akiyoshi K; Noda M
J. Cell. Biochem., 101, 1063 - 1070, 2007

[5] Selective biorecognition and preserving cell function on carbohydrates-immobilized phosphorylcholine polymers
Iwasaki Y; Takamiya U; Shinohara Y; Kurita K; Akiyoshi K
Biomacromolecules, 8, 2788 - 2794, 2007

[4] Cell-specific delivery of polymeric nanoparticles to carbohydrate tagging cells
Iwasaki Y; Maie H; Akiyoshi K
Biomacromolecule, 8, 3162 - 3168, 2007

[3] Surface modification with well-defined biocompatible triblock copolymers ? Improvement of biointerfacial phenomena on a poly(dimethylsiloxane) surface
Iwasaki Y; Takamiya M; Iwata R; Yusa S; Akiyoshi K
Colloids Surf., B: Biointerfaces, 57, 226 - 236, 2007

[2] Novel thermoresponsive polymers having biodegradable phosphoester backbones
Iwasaki Y; Wachiralarpphaithoon C; Akiyoshi K
Macromolecules, 40, 8136 - 8138, 2007

[1] Salt Effect on the Heat-Induced Association Behavior of Gold Nanoparticles Coated with Poly(N-isopropylacrylamide) Prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT) Radical Polymerization
Yusa S; Fukuda K; Yamamoto T; Iwasaki Y; Watanabe A; Akiyoshi K; Morishima Y
Langmuir., 23, 12842 - 12848, 2007

2006

[12] High functional hollow fiber membrane modified with phospholipid polymers for a liver assist bioreactor
Ho Ye S; Watanabe J; Takai M; Iwasaki Y; Ishihara K
Biomaterials, 27, 1955 - 1962, 2006

[11] Poly(MPC-co-BMA) coating reduces the adhesion of Candida albicans to poly(methyl methacrylate) surfaces
Hatsuno K; Mukohyama H; Horiuchi S; Iwasaki Y; Yamamoto N; Akiyoshi K; Taniguchi H
Prosthodont Res. Pract., 5, 21 - 25, 2006

[10] Nanogel-template mineralization: Polymer-calcium phosphate hybrid nanomaterials
Sugawara A; Yamane S; Akiyoshi K
Macromol. Rapid Commun, 27, 441 - 446, 2006

[9] Synthesis and characterization of amphiphilic polyphosphates with hydrophobic graft chains and cholesteryl groups as nanocarriers
Iwasaki Y; Akiyoshi K
Biomacromolecules, 7, 1433 - 1438, 2006

[8] Platelet separation from whole blood in an aqueous two-phase system with water-soluble polymers
Sumida E; Iwasaki Y; Akiyoshi K; Kasugai S
J. Pharmacol. Sci., 101, 91 - 97, 2006

[7] Dual mode bioreactions on polymer nanoparticles covered with phosphorylcholine group
Ito T; Watanabe J; Takai M; Konno T; Iwasaki Y; Ishihara K
Colloid Surf., B: Biointerfaces., 50, 55 - 60, 2006

[6] Stress response of adherent cells on a blend polymer surface composed of a segmented polyurethane and MPC copolymers
Sawada S; Iwasaki Y; Nakabayashi N; Ishihara K
J. Biomed. Mater. Res., 79A, 476 - 484, 2006

[5] Highly wettable polyethylene films generated by spontaneous surface enrichment of perfluoroalkylated phosphorylcholines
Iwasaki Y; Akiyoshi K
J. Appl. Polym. Sci., 102, 2868, 2006

[4] Heat shock protein-like activity of nanogel artificial chaperone for citrate synthase
Sawada S; Nomura Y; Aoyama Y; Akiyoshi K
J. Bioact. Compat. Polym., 21, 487 - 501, 2006

[3] A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques
Kudo H; Sawada T; Kazawa E; Yoshida H; Iwasaki Y; Mitsubayashi K
Biosens. Bioelectron, 22, 558, 2006

[2] Inhibition of the formation of amyloid beta-protein fibrils using biocompatible nanogels as artificial chaperones
Ikeda K; Okada T; Sawada S; Akiyoshi K; Matsuzaki K
FEBS Lett., 580, 6587, 2006

[1] HER2-specific T-cell immune responses in patients vaccinated with truncated HER2 protein complexed with nanogels of cholesteryl pullulan
Kitano S; Kageyama S; Nagata Y; Miyahara Y; Hiasa A; Naota H; Okumura S; Imai H; Shiraishi T; Masuya M; Nishikawa M; Sunamoto J; Akiyoshi K; Kanematsu T; Scott AM
Clin. Cancer Res., 12, 7397, 2006
Murphy R, Hoffman EW, Old LJ, Shiku H

2005

[13] Thermoresponsive controlled association of protein with a dynamic nanogel of hydrophobized polysaccharide and cyclodextrin: Heat shock protein-like activity of artificial molecular chaperone
Nomura Y; Sasaki Y; Takagi M; Narita T; Aoyama Y; Akiyoshi K
Biomacromolecules, 6, 447 - 452, 2005

[12] In situ modification on cellulose acetate hollow fiber membrane modified phospholipid polymer for biomedical application
Ye SH; Watanabe J; Iwasaki Y; Ishihara K
J. Membr. Sci., 249, 133 - 141, 2005

[11] Cell separation in microcanal coated with electrically charged phospholipid polymers
Ito T; Iwasaki Y; Narita T; Akiyoshi K; Ishihara K
Colloids Surf., B:Biointerface., 41, 175 - 180, 2005

[10] Design of functional hollow fiber membranes modified with phospholipid polymers for application in total hemopurification system
Ye SH; Watanabe J; Takai M; Iwasaki Y; Ishihara K
Biomaterials, 26, 5032 - 5041, 2005

[9] Phospholipid polymer surfaces yield reduced bacterial and leukocyte adhesion under dynamic flow conditions
Patel J; Iwasaki Y; Ishihara K; Anderson JM
J. Biomed. Mater. Res., 73A, 359 - 366, 2005

[8] Changes in the morphology of cell-size liposomes in the presence of cholesterol: Formation of neuron-like tubes and liposome networks
Nomura SM; Mizutani Y; Kurita K; Watanabe A; Akiyoshi K
Biochim. Biophys. Acta: Biomembranes., 1669, 164 - 169, 2005

[7] Selective cell attachment to a biomimetic polymer surface through the recognition of cell-surface tags
Iwasaki Y; Tabata E; Kurita K; Akiyoshi K
Bioconjugate Chem., 16, 567 - 575, 2005

[6] Nanogel-quantum dot hybrid nanoparticles for living cell imaging
Hasegawa U; Nomura SM; Kaul CS; Hirano T; Akiyoshi K
Biochem. Biophys. Res. Commun., 331, 917 - 921, 2005

[5] Design of hybrid hydrogels with self-assembled nanogels as cross-linkers: Interaction with proteins and chaperone-like activity”
Morimoto N; Endo T; Iwasaki Y; Akiyoshi K
Biomacromolecules, 6, 1829 - 1834, 2005

[4] Hybrid nanogels with physical and chemical cross-linking structures as drug carrier
Morimoto N; Endo T; Ohtomi M; Iwasaki Y; Akiyoshi K
Macromol. Biosci., 5, 710 - 716, 2005

[3] Evaluation of 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer-coated dressing on surgical wounds
Katakura O; Morimoto N; Iwasaki Y; Akiyoshi K; Kasugai S
J. Med. Dent. Sci., 52, 115 - 121, 2005

[2] Well-controlled nanobiointerface generated from phosphorylcholine block copolymers brushes via a “grafting from” process
Iwata R; Iwasaki Y; Akiyoshi K; Takahara A
Trans. Mater. Res. Soc. Jpn., 30, 735 - 738, 2005

[1] Segmented polyurethane modified by photopolymerization and cross-linking with 2-methacryloyloxyethyl phosphorylcholine polymer for blood-contacting surfaces of ventricular assist devices
Kobayashi K; Ohuchi K; Hoshi H; Morimoto N; Iwasaki Y; Takatani S
J. Artif. Organs., 8, 237 - 244, 2005

2004

[13] Polyethylene/phospholipid polymer alloy as an alternative to poly(vinylchloride)-based materials
Ishihara K; Nishiuchi D; Watanabe J; Iwasaki Y
Biomaterials, 25, 1115 - 1122, 2004

[12] Innovative gas injection technique for closed hollow obturator
Iramaneerat W; Seki F; Watanabe A; Mukohyama H; Iwasaki Y; Akiyoshi K; Taniguchi H
Int. J. Prothdont., 17, 345 - 349, 2004

[11] Improved wet bonding of methyl methyl methacrylate-tri-n-butylborane resin to dentin etched with ten percent phosphoric acid in the presence of ferric ions
Iwasaki Y; Toida T; Nakabayashi N
J. Biomed. Mater. Res., 68A, 566 - 572, 2004

[10] Novel biodegradable polyphosphate cross-linker for making biocompatible hydrogel
Iwasaki Y; Nakagawa C; Ohtomi M; Ishihara K; Akiyoshi K
Biomacromolecules, 5, 3, 1110 - 15, 2004

[9] Nano-scale surface modification of a segmented polyurethane with a phospholipid polymer
Morimoto N; Watanabe A; Iwasaki Y; Akiyoshi K; Ishihara K
Biomaterials, 25, 23, 5353 - 5361, 2004

[8] Photoresponsive Nanogels Formed by the Self-Assembly of Spiropyrane-Bearing Pullulan That Act as Artificial Molecular Chaperones
Hirakura T; Nomura Y; Aoyama Y; Akiyoshi K
Biomacromolecules, 5, 5, 1804 - 1809, 2004

[7] Single molecular mechanics of a cholesterol-bearing pullulan nanogel at the hydrophobic interfaces
ImShik Lee; Akiyoshi K
Biomaterials, 25, 2911 - 2918, 2004

[6] Efect of remaining demineralised dentine on dental microleakage accessed by a dye penetration: how to inhibit microleakage?
Piemjai M; Watanabe A; Iwasaki Y; Nakabayashi N
J. Dentistry., 32, 495 - 501, 2004

[5] Copolymers of 2-methacryloyloxyethyl phosphorylcholine (MPC) as biomaterials
Nakabayashi N; Iwasaki Y
Biomed. Mater. Eng., 14, 345 - 354, 2004

[4] Design of biodegradable amphiphilic polymers: Well-defined amphiphilic polyphosphates with hydrophilic graft chains via ATRP
Iwasaki Y; Akiyoshi K
Macromolecules, 37, 7637 - 7642, 2004

[3] Control of nano-biointerfaces generated from well-defined biomimetic polymer brushes for protein and cell manipulations
Iwata R; Suk-in P; Hoven VP; Takahara A; Akiyoshi K; Iwasaki Y
Biomacromolecules, 5, 2308 - 2314, 2004

[2] Calcium Carbonate/Polymer Composites: Polymorph Control for Aragonite
Sugawara A; Kato T
Composite Interf., 11, 287 - 295, 2004

[1] Water-soluble phospholipid polymer as a new biocompatible synthetic DNA carrier
Sakaki S; Tsuchida M; Iwasaki Y; Ishihara K
Bull. Chem. Soc. Jpn., 77, 2283 - 2288, 2004

総説

2017

[2] ナノゲルを用いたワクチンのDDS
三浦 理紗子; 秋吉 一成
細胞, 49, 12, 9 - 12, 2017

[1] エクソソームによるピロリ菌病原タンパク質の輸送、パラダイムシフトをもたらすエクソソーム機能研究最前線
下田 麻子; 秋吉 一成
NTS, 53 - 59, 2017
落谷孝広 監修

2016

[4] 自己組織化ナノゲルによるDDS開発
田原義朗; 秋吉一成
ファインケミカル, 45, 11, 25 - 32, 2016

[3] エクソソームによる異種生物間のコミュニケーションと疾患
下田麻子; 秋吉一成
細胞, 48, 1, 9 - 12, 2016

[2] DDS研究・開発に有用な試薬第6回 タンパク質導入試薬
河﨑陸; 佐々木善浩; 秋吉一成
Drug Delivery System, 31, 242 - 244, 2016

[1] Amylose engineering: phosphorylase-catalyzed polymerization of functional saccharide primers for glycobiomaterials
T. Nishimura; K. Akiyoshi
, 2016
DOI: 10.1002/wnan.1423

2015

[1] バイオナノトランスポーターとしてのエクソソームの機能と応用
澤田晋一; 下田麻子; 佐藤祐子; 瀬尾尚宏; 珠玖 洋; 秋吉一成
, 40, 5, 254 - 259, 2015

2014

[2] プロテオリポソーム工学:膜タンパク質組込みリポソーム構築のためのシャペロン科学
安藤 満; 吉田 昭介; 澤田 晋一; 秋吉 一成
, 39, 5, 270 - 276, 2014

[1] 細胞外ベシクルの構造特性と機能制御
下田 麻子; 澤田 晋一; 秋吉 一成
Drug Delivery System, 29, 2, 108 - 115, 2014

2013

[6] ナノゲル基盤材料によるタンパク質医薬の徐放技術とその応用,  遺伝子医学BOOK別冊 ここまで広がるドラッグ徐放技術の最前線 古くて新しいドラッグデリバリーシステム(DDS)
田原義朗; 秋吉一成
メディカルドゥ, 124 - 130, 2013

[5] シャペロン機能工学による新規バイオ材料の創製
澤田晋一; 秋吉一成
化学と工業, 66-2, 108 - 110, 2013

[4] 新規バイオナノトランスポーターの開発と応用, 先端研究ウォッチング
秋吉一成
日本化学会バイオテクノロジー部会 NEWS LETTER, 17, 1, 3 - 8, 2013

[3] 人工分子シャペロンシステム, 特集 高分子の「フォールディング」に挑む
佐々木善浩; 秋吉一成
高分子, 62, 505 - 507, 2013

[2] ナノゲル,DDSキャリアの最前線,応用が拡がるDDS
秋吉一成; 西村智貴
NTS, 111 - 117, 2013

[1] 機能性ナノゲルを用いたタンパク質デリバリー, 非経口投与製剤の開発と応用-次世代型医薬品の新規投与形態の開拓を目指して-
橋本良秀; 秋吉一成
シーエムシー出版, 2013
山本 昌監修

2012

[9] 生体膜トンネルナノチューブーその生物学的機能と材料科学への展開
佐々木善浩; 秋吉一成
化学, 167, 68 - 69, 2012

[8] 「細胞の構造を利用する」細胞から分泌される細胞外ベシクル:エキソソームの機能と応用
澤田晋一; 佐藤祐子; 秋吉一成
バイオマテリアル, 30, 178 - 183, 2012

[7] ナノバイオ,自己組織化と機能材料,最先端材料システム, One Point 3
佐々木善浩; 秋吉一成
高分子学会, 113 - 122, 2012

[6] 再生医療のためのナノゲル基盤ヒドロゲル, 先端バイオマテリアルハンドブック
下田麻子; 秋吉一成
NTS, 292 - 295, 2012
秋吉一成, 石原一彦, 山岡哲二 監修

[5] 免疫とDDS, 先端バイオマテリアルハンドブック
高橋治子; 秋吉一成
NTS, 342 - 346, 2012
秋吉一成, 石原一彦, 山岡哲二 監修

[4] ナノゲル工学による新規バイオ材料の設計と医療応用
向井貞篤; 秋吉一成
PHARM TECH JAPAN, 28, 125(2721) - 131(2727), 2012

[3] 分子シャペロン機能を有するナノゲルキャリアの設計と医療応用
秋吉一成
科研費NEWS2012年度, 2, 11, 2012

[2] シャペロン機能工学による新規バイオ材料の創製
澤田晋一; 秋吉一成
化学と工業 , 66-2, 108 - 110, 2012

[1] Nanogel Engineering by associating polymers for biomedical applications, Hydrogel Micro and Nanoparticles, First Edition
Y. Sasaki; K. Akiyoshi
Wiley-VCH, 187 - 207, 2012
Edited by L. Andrew Lyon and Michael Joseph Serpe

2011

[3] 両親媒性分子の自己組織化
秋吉一成
物理科学雑誌パリティ, 26, 5, 22 - 24, 2011
丸善

[2] ナノゲルタンパク質デリバリーを用いた経鼻ワクチンの開発
幸義和; 清野宏; 澤田晋一; 秋吉一成
バイオマテリアル-生体材料, 29, 2, 80 - 87, 2011

[1] ナノゲル工学による新規DDSの開発
澤田晋一; 秋吉一成
膜(MEMBRANE), 36, 4, 191 - 196, 2011

2010

[3] ナノゲル工学による新規DDSの設計
澤田晋一; 秋吉一成
薬剤学, 70, 1, 39 - 44, 2010

[2] Construction of a 3D-liposomal array for Biochip Applications
Y. Sasaki; K. Abe; K. Akiyoshi
Nanobio-Interfaces in Relation to Molecular Mobility, 97 - 102, 2010

[1] ナノゲルを基盤とするナノバイオエンジニアリング
佐々木善浩; 秋吉一成
人工臓器, 39, 3, 197 - 201, 2010

2009

[2] 進化するバイオ高分子・生体分子システムへの挑戦,特集高分子学会研究会
秋吉一成
高分子, 58, 756 - 760, 2009

[1] ナノゲル工学による新規ナノバイオ材料設計,高分子科学最近の進歩
佐々木善浩; 秋吉一成
高分子, 58, 756 - 760, 2009

2008

[3] 会合生高分子の自己組織化.色材における基礎科学講座(第Ⅹ講)
菅原彩絵; 秋吉一成
J. Jpa. Soc. Colour Mater., 81, 4, 178 - 184, 2008

[2] ナノゲルDDS研究の最前線
森本展行; 秋吉一成
ファルマシア, 44, 8, 764 - 768, 2008

[1] 生体由来高分子ゲルを用いたDDS担体研究
佐々木善浩; 秋吉一成
バイオマテリアル, 26, 6, 30 - 36, 2008

2007

[1] ナノゲル工学による新規ドラッグデリバリーシステムの開発
長谷川麗; 秋吉一成
細胞工学, 26, 679 - 685, 2007

2006

[4] ナノゲル工学とシャペロン機能工学
秋吉一成
日本臨牀, 64, 2, 215 - 220, 2006

[3] 細胞機能をどこまで組み立てられるか? セルサイズリポソーム工学から人工細胞モデルへ
野村M.慎一郎; 秋吉一成
化学と工業 , 59, 8, 860 - 863, 2006

[2] シャペロン機能工学によるタンパク質の再生・集積制御
秋吉一成
現代化学, 428, 30 - 35, 2006

[1] リン脂質構造を模倣した生体適合性材料
岩崎泰彦
バイオマテリアル-生体材料, 24, 3, 162 - 170, 2006

2005

[6] 生体システムから学ぶバイオマテリアル創製, 未来を作るナノテクノロジー
秋吉一成
化学, 29 - 31, 2005

[5] 有機化学と高分子化学-複雑系への挑戦-
秋吉一成
高分子加工, 54, 248 - 249, 2005

[4] ナノゲル架橋ゲルの設計と人工分子シャペロン機能
森本展行; 秋吉一成
高分子加工, 54, 38 - 43, 2005

[3] 特集ドラッグデリバリーシステム,ナノドラッグデリバリーシステム
秋吉一成
東京医科歯科大学知的財産本部編,ライフサイエンスレポート, 5, 319 - 326, 2005

[2] PCサーフェイスの設計法とナノバイオエンジニアリング
岩﨑泰彦
ケミカルエンジニアリング, 50, 44 - 51, 2005

[1] Phosphorylcholine-containing polymers for biomedical applications
Iwasaki Y; Ishihara K
Anal. Bioanal. Chem., 381, 534 - 546, 2005

2004

[8] ナノゲルバイオマテリアル:DDSと人工分子シャペロン
秋吉一成
口腔病学会雑誌, 71, 1, 38, 2004

[7] 自己組織化ナノゲルとナノゲルエンジニアリング
秋吉一成
未来材料, 4, 2, 36 - 43, 2004

[6] ナノゲルによる人工分子シャペロンの開発
秋吉一成; 野村雄太
ケミカル・エンジニヤリング, 4, 54 - 59, 2004

[5] ポリマーバイオマテリアルのナノ表面制御
岩崎泰彦; 岩田綾子
文部科学省ナノテクノロジー総合支援プロジェクト 九州大学ナノ物質合成・解析支援 支援実施報告書, 2, 131 - 132, 2004

[4] 生体内環境を再現するポリホスフェートヒドロゲルの調製と機能
岩崎泰彦
コスメトロジー研究報告, 12, 24 - 30, 2004

[3] PCサーフェイステクノロジーで開くナノバイオエンジニアリング
岩崎泰彦
バイオサイエンスとインダストリー, 62, 668 - 671, 2004

[2] 生体適合性材料/高分子材料・技術総覧
岩崎泰彦
高分子材料・技術総覧演習委員会編,産業ビジネスセンター, 2004

[1] ナノゲル工学による人工分子シャペロンの開発
澤田晋一; 朝山和喜子; 秋吉一成
酵素工学ニュース(Enzyme Engineering News) , 52, 35 - 38, 2004
酵素工学研究会

著書

2016

[0] バイオナノトランスポーターとしてのエクソソームの機能と応用
澤田晋一, 下田麻子, 佐藤祐子, 瀬尾尚宏, 珠玖洋, 秋吉一成
40-5, pp.254 - 259(2016)

[0] DDS研究・開発に有用な試薬第6回 タンパク質導入試薬
河﨑陸, 佐々木善浩, 秋吉一成
31, pp.242 - 244(2016)

2015

[2] Pullulan. Encyclopedia of polymeric nanomaterials
Y. Tahara, K. Akiyoshi, S. Kobayashi, K. Müllen
(2015)

[1] 物理架橋ナノゲルの調製とDDS応用
田原義朗, 秋吉一成
pp.172 - 178(2015)
DDSキャリア作製プロトコル集 シーエムシー出版

[0] ナノゲルテクトニクス 多糖ナノゲルによる新規バイオマテリアル創製と医療応用
佐々木善浩, 秋吉一成
68-6, pp.496 - 498(2015)

[0] 糖鎖の新機能開発・応用ハンドブック 創薬・医療から食品開発まで
, 秋吉一成
(2015)

[0] ブロックポリマーの酵素合成
西村 智貴, 秋吉一成, 秋吉一成
pp.422 - 426(2015)
糖鎖の新機能開発・応用ハンドブック

[0] 多糖の疎水化によるナノゲル形成と機能
竹田茂生, 秋吉一成, 秋吉一成
pp.511 - 513(2015)

2014

[1] Intracellular Protein Delivery Using Self-Assembled Amphiphilic Polysaccharide Nanogels. Intracellular Delivery II 2014th ed.
A. Shimoda, S. Sawada, K. Akiyoshi, A. Prokop, Y. Iwasaki, A. Harada
7, pp.265 - 274(2014)

2011

[2] ''医薬品:薬を運ぶナノキャリアの設計 '', 現代表面科学シリーズ5 ひとの暮らしと表面科学
秋吉一成
1.4節, pp.38 - 44(2011)
日本表面科学会 編集

[1] ''量子ドットデリバリーシステム '', 蛍光イメージング/MRIプローブの開発
戸井田さやか, 秋吉一成
pp.153 - 162(2011)
菊地和也 監修

2010

[4] ''ナノゲル工学によるDDSキャリアの開発と応用'', 食品・化粧品・医療分野へのゲルの利用
戸井田さやか, 秋吉一成
pp.186 - 192(2010)
西成勝好 監修

[3] ''人工シャペロンシステム'', 酵素利用技術大系-基礎・解析から改変・高機能化・産業利用まで-
高橋治子, 秋吉一成
pp.213 - 219(2010)
小宮山眞 監修

[2] ''先端医療に活きるコロイド界面化学と技術、リポソーム'', 現代界面コロイド科学の事典
秋吉一成
pp.113 - 115(2010)

[1] ''ワクチン抗原デリバリーシステム'', がん免疫療法-実用化へのチャレンジ-
安岡潤一, 秋吉一成
pp.74 - 82(2010)
珠玖洋 監修

2009

[5] ''インジェクタブル高分子'', ますます重要になる細胞周辺環境の科学技術.遺伝子医学MOOK別冊
下田麻子, 秋吉一成
pp.77 - 80(2009)
田畑泰彦監修

[4] ''DDSナノデバイス'', バイオ利用&健康デバイス
高橋治子, 秋吉一成
pp.158 - 167(2009)

[3] ''分子シャペロン機能工学'', 超分子 サイエンス & テクノロジー
秋吉一成
pp.1018 - 1024(2009)
国武豊喜監修

[2] ''生体の機能'', 現代界面コロイド化学の基礎-原理・応用・測定ソリューション
秋吉一成
pp.332 - 338(2009)
第3版日本化学会編

[1] ''Nanogel Enigeering of Cholesterol-rearing Pullulan'', Nanotechnology for Producing Novel Cosmetics in Japan
S. Yamane, K. Akiyoshi
pp.132 - 138(2009)
Ed. K. Shimada

2008

[2] ''ナノゲルキャリア'', 機能性DDSキャリアの製剤設計
佐々木善浩, 秋吉一成
pp.63 - 71(2008)
岡田弘晃 監修

[1] 次世代医療のための高分子材料工学

(2008)
秋吉一成,岸田晶夫 監修

2007

[5] ''ナノゲル/リン酸カルシウムハイブリッド粒子'', バイオミネラリゼーションとそれに倣う新機能材料の創製
菅原彩絵, 秋吉一成
pp.225 - 235(2007)
加藤隆史 監修

[4] ''コレステロール置換プルランによるナノゲル工学'', 化粧品開発とナノテクノロジー
山根説子, 秋吉一成
pp.167 - 175(2007)
島田邦男 監修

[3] リポソーム.自己組織化ナノマテリアル-フロントランナー8人が語るナノテクノロジーの新潮流-
秋吉一成
(2007)
国武豊喜 監修

[2] ''ナノゲル'', ナノバイオ大辞典
森本展行, 秋吉一成
pp.373 - 375(2007)
山根恒夫,松永是,民谷栄一 監修

[1] ''グラフト型両親媒性高分子'', 絵で見てわかるナノDDS-マテリアルから見た治療・診断・予後・予防、ヘルスケア技術の最先端-.遺伝子医学MOOK別冊
小澤弥生, 秋吉一成
pp.93 - 98(2007)
田畑泰彦 編集

2006

[6] ''Nanogel Engineered Designs for Polymeric Drug Delivery'', Polymeric Drug Delivery Volume II ? Polymeric Matrices and Drug Particle Engineering. ACS Symposium Series 924
Morimoto N, Nomura SM, Miyazawa N, Akiyoshi K
pp.88 - 101(2006)
Svenson S. Ed.,

[5] Polysaccharide nanogel engineering: Design of n nano-structured hydrogel materials and application to biotechnology and medicine
Morimoto N, Hasegawa U, Sugawara A, Yamane S, Akiyoshi K
pp.67 - 87(2006)
Yuasa H. Ed

[3] ''バイオ計測のためのポリマーマテリアル'', 未来を拓くユビキタス・バイオセンシング
岩崎泰彦
pp.68 - 80(2006)
三林浩二 編

[3] Smart Polymer Nano- and Microgels: Synthesis and Applications. The MML series vol.8
Morimoto N, Akiyoshi K
pp.159 - 182(2006)
Arshady R.Ed.,

[2] ''MPCポリマーグラフト表面とバイオインターフェイス構築'', 機能物質の集積膜と応用展開
岩崎泰彦, 秋吉一成
pp.227 - 242(2006)
関隆広 編

[1] Nonfouling surface generated from phosphorylcholine-bearing polymers in Proteins at solid-liquid interfaces
Iwasaki Y, Nakabayashi N, Ishihara K
(2006)
Dejardin P. ed

2005

[10] ''バイオインスパイヤードマテリアル'', 図解 高分子新素材のすべて
森本展行, 秋吉一成
pp.126 - 129(2005)
國武豊喜 監修

[9] ''糖鎖集合体の機能'', 糖鎖科学の新展開-機能解明・次世代型材料・医薬品開発に向けて-
秋吉一成
pp.501 - 508(2005)
谷口直之,伊藤幸成 監修

[8] ''ナノテクのための生体材料および生体類似材料・脂質材料'', ナノマテリアルハンドブック
菅原彩絵, 秋吉一成
pp.772 - 777(2005)
国武豊喜 監修

[7] リポソーム応用の新展開-人工細胞の開発に向けて-

(2005)
秋吉一成,辻井薫 監修

[6] ''リポソーム(ベシクル)構成分子・両親媒性高分子'', リポソーム応用の新展開-人工細胞の開発に向けて-
秋山恵里, 秋吉一成
pp.27 - 32(2005)
秋吉一成,辻井薫 監修

[5] ''タンパク質合成能を有する人工細胞とネットワーク'', リポソーム応用の新展開-人工細胞の開発に向けて-
野村慎一郎, 秋吉一成
pp.349 - 354(2005)
秋吉一成,辻井薫 監修

[4] ''機能性ナノキャリアの設計とバイオマテリアル応用'', ファインケミカルシリーズ界面活性剤・両親媒性高分子の最新機能
菖蒲弘人, 秋吉一成
pp.216 - 222(2005)
國枝博信,坂本一民 監修

[3] ''ナノゲルキャリア'', ソフトナノテクノロジー・バイオマテリアル革命
長谷川麗, 秋吉一成
pp.236 - 244(2005)
田中順三,下村政嗣 監修

[2] ''会合性多糖の設計と機能'', 糖鎖化学の最先端技術
森本展行, 秋吉一成
pp.144 - 153(2005)
小林一清,正田晋一郎 監修

[1] ''Interaction between biomaterials and cell tissues'', in Surfaces and interfaces for biomaterials
Iwasaki Y, Nakabayashi N
(2005)
Vadgama P. ed.

2004

[4] ''バイオミネラリゼーションにならう無機/有機複合材料の開発'', バイオミネラリゼーションにならう無機/有機複合材料の開発. ナノ・IT時代の分子機能材料と素子開発
菅原彩絵, 加藤隆史
pp.388 - 397(2004)
吉野勝美 監修

[3] ''人工生体膜・人工細胞'', 第6版化学便覧
秋吉一成
pp.544 - 547(2004)
応用化学編

[2] ''バイオマテリアル界面の傾斜機能制御'', ナノバイオエンジニアリングマテリアル
岩崎泰彦
pp.9 - 18(2004)
石原一彦 監修

[1] ''分子シャペロンインスパイアード・ナノゲルシステム'', ナノバイオエンジニアリングマテリアル
秋吉一成, 澤田晋一
pp.226 - 235(2004)
石原一彦 監修

受賞

2013.7.31

第23回バイオ・高分子シンポジウム 学生優秀ポスター賞

『両親媒性グルカンデンドリマーの設計と人工分子シャペロン機能』

○竹田 茂生・高橋 治子・久保 亜希子・澤田 晋一・秋吉 一成

 

2014.5.30

第63回高分子学会年次大会 高分子学会優秀ポスター賞

『脂質膜被覆無機ハイブリッド微粒子の設計と機能』

○竹谷以紀・シクラ 駿・秋山 源・澤田 晋一・佐々木 善浩・秋吉 一成

 

2014.7.31

第30回日本DDS学会 永井賞

『ナノゲル工学の提唱と新規DDSの開発』

○秋吉 一成

 

2014.9.26

第63回高分子討論会 高分子学会優秀ポスター賞

『マイクロチャネル法によるナノゲルー光架橋微粒子の設計と機能』

○津田 将志・田原 義朗・佐々木 義浩・澤田晋一・秋吉 一成

『多分岐ガラクトキシログルカンナノゲルの設計と機能』

○湯川 寛子・竹田 茂生・澤田 晋一・佐々木 善浩・秋吉 一成

 

2014.11.18

第36回日本バイオマテリアル学会大会  ハイライト講演

『無機微粒子テンプレート法による新規バイオマテリアルの開発』

○佐々木 善浩・竹谷 以紀・シクラ 駿・澤田 晋一・秋吉 一成

 

2015.5.29

第64回高分子学会年次大会 高分子学会優秀ポスター賞

『抗原デリバリーシステムとしての多糖ナノゲルの機能評価』

○犬塚 佑希浩・田原 義朗・向井 貞篤・澤田 晋一・佐々木 善浩・秋吉 一成

『多糖ナノボールの集積制御に基づく新規ゲル材料の設計とバイオマテリアル応用』

○沖田 圭司・竹田 茂生・橋本 良秀・向井 貞篤・澤田 晋一・佐々木 善浩・秋吉 一成 

『生体膜ナノチューブ固定化ヒドロゲルの設計とバイオ機能』

○吉竹 広記・澤田 晋一・佐々木 善浩・秋吉 一成

『ビタミンB6置換ポリマーによる酵素ハイブリッドの設計と機能』

○吉村 貴大・西村 智貴・澤田 晋一・佐々木 善浩・秋吉 一成

 

2015.7.17

第61回高分子研究発表会 エクセレントポスター賞

『微粒子泳動法によるナノゲル集積チューブの設計と機能』

○小齊 拓人・吉竹 広記・澤田 晋一・佐々木 善浩・秋吉 一成

 

2015.9.17

第64回高分子討論会  高分子学会優秀ポスター賞

『人工細胞法による新規イムノリポソームの設計と機能』

○三浦 理紗子・安藤 満・澤田 晋一・向井 貞篤・佐々木 善浩・秋吉 一成

 

2016. 4. 13

The Chemical Society of Japan  CSJ Student Presentation Award 2016

“Control of protein refolding by amphiphilic glucan dendrimers”

D3  TAKEDA, Shigeo

 

2016. 5. 27 

第65回高分子学会年次大会 高分子学会優秀ポスター賞

『バイオ医薬品デリバリーのためのナノハイブリッドキャリアの設計と機能』

○河崎 陸・佐々木 善浩・片桐 清文・澤田 晋一・秋吉 一成

『機能性グルカンデンドリマーを用いた核酸デリバリー』

○竹田 茂生・澤田 晋一・佐々木 善浩・秋吉 一成

『酵素重合法を用いた多分岐糖鎖ナノゲルの合成と機能』

○山田 安乙奈・西村 智貴・澤田 晋一・佐々木 善浩・秋吉 一成

 

2016. 7. 28

第26回バイオ・高分子シンポジウム 学生優秀ポスター賞

『磁性ナノゲルキャリアによる細胞内タンパク質導入』
D3  河崎 陸

 

2016. 9. 16

第65回高分子討論会 高分子学会優秀ポスター賞

『生体内分離性を有するイオンナノゲル集積ゲルの設計と機能』
M1  児嶋 大世

 

2016. 12

IPC 2016 The 11th SPSJ International Polymer Conference 
BEST POSTER AWARD (Bioconjugate Chemistry)
D3  河崎 陸

 

2017. 5. 31

第66回高分子学会年次大会 高分子学会優秀ポスター賞

『音響波によるマイクロゲル構造の制御』
M1  角田 千里

 

2017. 7. 7

第33回日本DDS学界学術集会 優秀発表賞

『分岐多糖ナノゲルによる新規がんワクチンの開発』
D1 三浦 理紗子

『バキュロウイルス発現系を用いた機能性膜タンパク質発現細胞外ベシクルの設計と機能』
M2 石川 良賀

『機能性グルカンナノスフェアによるsiRNAデリバリーシステムの開発』
M2 張 若詩

 

2017. 9. 7

KIPS2017 International Symposium Excellent Poster Award (Bronze)

“Development of Antigen Delivery System by Self-assembled Branched Dextrin Nanogel”
D1  Risako Miura

 

2017. 9. 22

第66回高分子討論会 高分子学会優秀ポスター賞

『重圧印加法による細胞外ベシクルの放出誘導とバイオ機能評価』
M1 天野 愛

『膜タンパク質固相合成のための脂質膜コート微粒子の開発』
M1 氏平 勇樹

 

2017.11.22

第39回日本バイオマテリアル学会大会 優秀研究ポスター賞

『バキュロウイルス発現系による機能性膜タンパク質提示細胞外ベシクルの構築と機能』
○石川 良賀・吉田 昭介・澤田 晋一・佐々木 善浩・秋吉 一成